Research Interest
Medical & population genomics
Since the Human Genome Project, genome-wide association studies (GWAS) have been successful in identifying common genetic variants that are associated with diverse human diseases or traits. However, only a small portion of heritability of the diseases or traits has been explained by the discovered common variants. Among many possible factors for missing heritability, rare variants with large effects are expected to make a major contribution to the missing heritability. Our lab identifies disease-causing genes and treatment targets by utilizing advanced genomic technologies (next-generation sequencing and statistical approaches for multi-omics data).
Digital health informatics
Future of medicine is summarized as P4 medicine, a discipline that is predictive, personalized, preventive and participatory. P4 medicine will improve healthcare substantially and enable precision medicine. Recent advances in mobile and wearable devices and genomic technology generate unprecedentedly huge and digitized health information. Not only academic but also industrial organizations are currently working on digital healthcare. Digital healthcare informatics encompass genetic, environmental and behavioral components of personal health. Genomic and clinical data collected in Samsung Medical Center can be also utilized. Our lab members with various expertise collaborate together towards this goal.
Machine learning, artificial intelligence & big data analysis
Data-driven medicine is a key aspect of future medicine. Machine learning techniques are very useful in generating data-driven hypotheses (ex., identifying unknown causal factors for disease) and prediction models of diagnosis and prognosis. In particular, deep neural network can be applied to unstructured data such as medical images, DNA sequences, etc. Our lab uses statistical and machine learning methods to address various biomedical questions.